本地部署 下载大模型 大模型下载 https://www.modelscope.cn/models/AI-ModelScope/bge-large-zh-v1.5 https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b 初始化知识库 git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git cd Langchain-Chatchat pip install -r requirements.txt python copy_config_example.py python init_database.py --recreate-vs 启动服务 python startup.py -a

LLM Notes

大模型下载 pip install modelscope from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('ZhipuAI/chatglm3-6b', cache_dir='./model', revision='master') 下载 https://www.modelscope.cn/models/ZhipuAI/chatglm2-6b 分词器(Tokenizer) tokenization算法大致经历了从word/char到subword的进化. 目前有三种主流的Subword分词算法,分别是Byte Pair Encoding (BPE), WordPiece和Unigram Language Model Back in the ancient times, before 2013, we usually encoded basic unigram tokens using simple 1’s and 0’s in a process called One-Hot encoding. word2vec improved things by expanding these 1’s and 0’s into full vectors (aka word embeddings). BERT improved things further by using transformers and self-attention heads to create full contextual sentence embeddings.